搜索结果: 1-15 共查到“计算机科学技术 Fisher”相关记录27条 . 查询时间(0.14 秒)
基于概率类和不相关判别的半监督局部Fisher方法
Fisher 判别分析 维数约简 概率类 不相关判别 半监督学习
2015/5/19
Fisher 判别分析是统计模式识别中经典的有监督维数约简方法, 可以在最大化类间散度的同时最小化类内散度, 但存在分析过程中仅使用有标记数据而忽略无标记数据的问题. 鉴于此, 提出基于概率类和不相关判别的半监督局部Fisher (SLFisher) 方法, 以实现半监督学习的高维映射到低维的类间数据对尽可能地分离, 且类内邻近数据尽可能地紧凑. 采用2 组标准数据集进行实验, 结果表明了SLFi...
针对语音识别中梅尔倒谱系数(MFCC)对中高频信号的识别精度不高,并且没有考虑各维特征参数对识别结果影响的问题,提出基于MFCC、逆梅尔倒谱系数(IMFCC)和中频梅尔倒谱系数(MidMFCC),并结合Fisher准则的特征提取方法。首先对语音信号提取MFCC、IMFCC和MidMFCC三种特征参数,分别计算三种特征参数中各维分量的Fisher比,通过Fisher比对三种特征参数进行选择,组成一种...
具有Fisher判据约束的非负稀疏编码模型
Fisher判据约束 非负稀疏编码 特征提取 特征基 特征识别 图像重构
2012/3/9
在标准非负稀疏编码(NNSC)的基础上,引入Fisher线性判据约束,提出一种改进NNSC模型。该模型能够提高稀疏系数的空间可分性和特征分类能力。通过测试掌纹自然图像可知,提取的图像特征具有方向性、空间性和选择性,利用掌纹特征基可实现图像重构,采用距离分类器可得到较好的识别效果。仿真结果验证了该模型在可视神经元建模、图像特征提取和模式分类中的有效性。
基于核Fisher鉴别分析与支持向量机的虹膜识别方法
核Fisher鉴别分析 支持向量机 模式匹配 虹膜识别
2013/12/12
为了提高虹膜识别系统的识别性能,针对虹膜识别中的特征提取与模式分类问题,提出了一种基于核Fisher鉴别分析(kernelfisherdiscriminantanalysis,KFDA)与支持向量机(supportvectormachine,SVM)的虹膜识别方法。从采集到的人眼图像中定位虹膜,并对其进行归一化处理;使用核Fisher鉴别分析提取虹膜纹理特征,并通过选择合适的特征个数提高识别的准确...
基于高维映射Fisher判别分析的图像分割
Fisher判别分析 图像分割 非线性变换
2010/1/28
为提高Fisher判别分析的质量,对图像中各像素本身的灰度值及其邻域平均灰度值特征进行两步聚类分析,根据聚类结果选取Fisher判别分析所需的训练样本,同时为了尽可能降低判别分析过程中有用信息的损失,将所得到的原训练样本集进行非线性变换,使其映射到高维空间中,利用映射后的训练样本求得Fisher判别规则。实验结果表明,与基于原训练样本的Fisher判别分析和基于寻找更多样本特征的Fisher判别分...
基于模糊Fisher准则的自适应降维模糊聚类算法
模糊散布矩阵 模糊Fisher准则 最优投影矢量
2009/11/24
该文指出曹苏群等人提出的基于模糊Fisher准则(FFC)的半模糊聚类算法(FFC-SFCA)中的一个推导错误,结合模糊紧性和分离性(FCS)聚类算法提出新的聚类算法:FFC-FCS。FFC-FCS充分利用FFC的特征提取和降维特性,交替运行原始数据空间中FFC和投影空间中的FCS,通过对降维数据的聚类实现对原始数据的聚类。FFC-FCS不仅对低维数据具有优异的分类性能而且对高维数据也表现出一定的...
基于Fisher投影的多光谱人脸融合识别
红外图像 可见光图像 Fisher线性判别 人脸识别 融合
2010/4/23
根据可见光图像与红外图像的信息互补性,分析在决策层融合识别中的归一化法和融合算法,提出一种基于统计的Fisher投影融合法,利用Fisher线性判别准则在二维分数空间寻找最优投影方向,使不同类样本投影后能最佳分离。在多光谱人脸融合识别中的应用结果表明,与其他融合算法相比,该算法具有更好的识别效果。
基于SIFT特征和Fisher的人脸识别方法
SIFT特征 Fisher线性鉴别 错误接受率 Adaboost算法
2009/8/19
针对人脸识别中特征提取和特征分类问题,提出一种基于SIFT特征和Fisher鉴别的人脸识别新方法。采用具有旋转、缩放、平移、光照不变性及部分仿射不变性的SIFT特征作为初级特征,利用Fisher线性鉴别方法再次提取初级特征,从而得到样本的二次特征,通过比较二次特征之间的欧氏距离,得到识别结果。实验结果表明,新的方法具有99.65%的正确识别率,高于Fisher方法和核Fisher方法,识别速度和F...
基于图像分块的改进Fisher人脸识别算法
人脸识别 二维线性鉴别分析 改进Fisher算法
2009/7/16
二维方法用于图像矩阵特征提取,虽然速度快,但影响了分类速度。针对二维线性鉴别分析(Two-Dimensional Linear Discriminant Analysis,2DLDA)的特点,研究了一种基于图像分块的改进Fisher人脸识别算法,该算法首先对人脸图像进行压缩降维处理,得到相应的特征矩阵,然后利用改进Fisher算法对特征矩阵进行类间离散度矩阵和类内离散度矩阵的计算,该算法充分考虑了...
近邻边界Fisher判别分析
维数约简 流形学习 主成份分析
2009/5/11
将数据集进行合理的维数约简对于一些机器学习算法效率的提高起着至关重要的影响。该文提出了一种利用数据点邻域信息的线性监督降维算法:近邻边界Fisher判别分析(Neighborhood Margin Fisher Discriminant Analysis,NMFDA)。NMFDA尝试将每一数据点邻域内最远的同类数据点和最近的异类数据点之间的边界在投影子空间内尽可能地扩大,从而提高基于距离的识别算法...
基于模糊Fisher准则的半模糊聚类算法
Fisher准则 半模糊聚类 最优鉴别矢量
2009/4/29
该文针对线性可分数据提出一种鲁棒的基于模糊Fisher准则的半模糊聚类算法FFC-SFCA。FFC-SFCA通过模糊化散布矩阵,将模糊理论引入Fisher判别方法,通过对模糊Fisher准则函数迭代优化实现聚类。FFC-SFCA的优势在于具有很好的鲁棒性且可以获得可分性好的聚类结果,同时,可以求得最优鉴别矢量和分类阈值。实验证实了FFC-SFCA的有效性以及对两个常规聚类算法的优越性。
小波变换与二维独立元分析(WT-2DICA)能有效提取人脸图像的高阶统计信息,但不能很好地识别受污损的人脸图像。改进Fisher算法充分考虑了类别信息,避免了传统Fisher算法造成的小样本问题。该文结合2种算法的优点,融合改进Fisher算法的最佳投影方向与WT-2DICA算法的独立基子空间,获得了融合投影方向。实验结果表明,该融合算法具有较好的分类性能。
基于二维Fisher线性判别的掌纹识别方法
Fisher线性判别 主成分分析 二维FLD
2009/4/14
在Fisher线性判别(FLD)中,类内离散矩阵总是奇异的。为了解决矩阵的奇异性问题,应用一种新的二维Fisher线性判别(2DFLD)直接进行矩阵投影。对于PolyU掌纹图像库,分别用PCA, PCA+FLD和2DFLD提取特征掌纹子空间,将待识别图像投影到低维子空间上,用余弦距离进行掌纹匹配。实验结果表明,与PCA相比,PCA+FLD的识别率最多提高1.18%。2DFLD识别率最高达到99.3...
基于加权Fisher准则的线性鉴别分析及人脸识别
线性鉴别分析 加权Fisher准则 特征抽取
2009/2/5
提出了一种基于加权Fisher准则线性鉴别分析的人脸识别方法。该方法引入了一种新的权函数对Fisher准则加权,以提高样本在低维线性空间中的可分性,然后探讨了高维、奇异情况下如何降低运算量的问题,并给出了一个简单高效的算法。在ORL标准人脸库上进行测试,由该算法抽取的特征在最近邻分类器和最小距离分类器下均达到96%的正确识别率,这一结果优于经典的特征脸和Fisher脸方法在该库上的识别结果。