工学 >>> 计算机科学技术 >>> 计算机科学技术基础学科 >>> 自动机理论 可计算性理论 计算机可靠性理论 算法理论 数据结构 数据安全与计算机安全 计算机科学技术基础学科其他学科
搜索结果: 1-8 共查到计算机科学技术基础学科 PCA相关记录8条 . 查询时间(0.015 秒)
中国科学技术大学高级计算机体系结构课件 pca-lec07-SMP1。
提出一种新的基于流形学习的数据降维及特征提取方法: 局部保持PCA 算法(LPPCA). 通过在PCA 的优化目标中融入流形学习的思想, 不仅使投影得到的低维空间和原始样本空间具有相似的全局结构, 并且保持了相似的局部近邻结构, 克服了传统PCA 方法只关注全局结构特征而忽略局部流形特征的缺陷, 同时给出了LPPCA 在故障检测中的应用方法. S-Curve 和Swiss-roll 曲面数值仿真和...
针对网络入侵检测数据存在大量冗余信息和传统聚类算法对离群点检测不足的问题,提出一种基于主成分分析(principal component analysis, PCA)和半监督聚类的入侵检测算法。首先使用PCA对数据进行特征提取,消除数据间的冗余属性;然后利用少量已标记样本和成对约束信息,通过引入竞争凝聚让系统主动学习,以实现对大量未知样本的检测。在入侵检测数据集和UCI基准数据集上的实验结果表明,...
针对主成分分析(Principal Component Analysis,PCA)在克服变量多重相关性中的局限作用,提出了基于K-maxmin聚类的改进PCA特征提取方法,并结合RelieF算法去除分类不相关特征,可进一步提高算法效率和准确性。实验结果表明,该方法的特征提取效果优于传统的PCA方法。
在测井技术与储层基本特征研究的基础上,对与渗透率相关的测井参数和岩心参数进行了分析,根据传统的储层渗透率预测方法,提出了一种基于主成分分析与支持向量回归的储层渗透率预测方法。应用主成分分析对测井参数和岩心参数进行数据降维,优选出与渗透率最相关的参数,将优选出的测井参数和岩心参数作为支持向量回归模型的输入参数进行渗透率预测。实验结果表明,利用主成分分析算法提取的特征参数与渗透率有较好的相关性,且支持...
针对主成分分析(PCA)在非线性特征的观测变量中应用的局限作用,对PCA进行了理论研究。基于欧氏空间和统计方法,讨论了PCA的数学本质,以变量高度多重相关为例,分析了非线性系统结构,提出并证明了PCA在克服变量多重相关性和多指标系统评估中存在局限性的必然原因。针对一些具体的非线性问题,提出了若干改进的PCA方法,以及消除其局限性的方法和建议。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...