工学 >>> 计算机科学技术 >>> 人工智能 >>> 人工智能理论 自然语言处理 机器翻译 模式识别 计算机感知 计算神经网络 知识工程 人工智能其他学科
搜索结果: 1-4 共查到人工智能 2DPCA相关记录4条 . 查询时间(0.04 秒)
阐述了基于主成分分析 (Principal Component Analysis,PCA)和二维主成分分析(2DPCA)的人脸识别方法,分析了该方法在矩阵理论中的来源和算法,提出了PCA+2DPCA分析方法,并采用2DPCA求出特征向量,PCA进行最优压缩,从而降低了维数.
提出了一种基于共同向量结合2维主成分分析(2-dimen-sional principal component analysis, 2DPCA)的人脸识别方法. 共同向量由图像通过Gram-Schmidt正交变换而求得, 具有该类图像共同不变的性质. 原始图像与该类共同向量之间的差分向量通过2DPCA处理, 依据最小距离测试得到识别结果. 实验在ORL和Yale人脸数据库进行测试, 结果表明本文提...
采用2DPCA方法提取人脸图像的特征值,通过RBF神经网络进行训练和识别,提出一种基于2DPCA和RBF神经网络的人脸识别方法,并将此方法应用于ORL人脸库。实验结果表明,该方法不仅具有较好的人脸图像识别能力,而且能明显缩短识别算法的运行时间。
针对二维主成分分析(2DPCA)提取的是人脸的全局特征,但局部特征对人脸识别的作用非常大,提出了一种基于局部特征的自适应加权2DPCA。该算法首先根据局部特征把人脸图像分为上中下三个独立的子块,2DPCA应用到每个子块,自适应地计算出每个子块对识别的不同预期贡献,并把此预期贡献值作为子块权重加权到分类器中以提高识别率,实验结果证明了此算法的有效性和可行性。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...