¹ÜÀíѧ >>> ͳ¼Æѧ >>> ÀíÂÛͳ¼Æѧ >>> ͳ¼Æµ÷²é·ÖÎöÀíÂÛ Í³¼ÆºËËãÀíÂÛ Í³¼Æ¼à¶½ÀíÂÛ Í³¼ÆÔ¤²âÀíÂÛ Í³¼ÆÂß¼­Ñ§ ÀíÂÛͳ¼ÆѧÆäËûѧ¿Æ
ËÑË÷½á¹û: 1-11 ¹²²éµ½¡°ÀíÂÛͳ¼Æѧ Strong Law¡±Ïà¹Ø¼Ç¼11Ìõ . ²éѯʱ¼ä(0.137 Ãë)
It is shown that Teicher's version of the strong law of large numbers for random variables, taking values in separable Banach spaces, holds under the assumption that the weak law of large numbers h...
Let f be a random variable with values in a metric space (X, d). For some class of metric spaces we define in terms of the metric d mathematical expectation of f as a closed bounded and non-empty s...
For partial sums {S,) of a stationary ergodic sequence {X,} with zero mean we find conditions for m ny-'Pr {sup (S Jk) > E ] < m n= 1 k?n in terms of the strong mixing weficients {a,,) and moment...
We prove the Marcinkiewicz-Zygmund SLLN (MZ- -SLLN) of order p, ~ € 1 12,[ , br associated sequences, not necessarily stationary. Our assumption on the moment of the random variables is minimal. We...
We present the Marcinkiewicz-type strong law of large numbers for random fields {X,, n E Zd,) of pairwise independent random variables, where Zd,, d & 1, is the set of positive d-dimensional lattic...
For a sequence of random elements {G, n 2 1) taking values in a real separable Rademacher type p (1 < p < 2) Banach space and positive constants b,l 7 co, conditions are provided for the strong law...
We use our maximum inequality for p-th order random variables (p>1) to prove a strong law of large numbers (SLLN) for sequences of p-th order random variables. In particular, in the case p=2 our resu...
In the paper we define the convergence of compact fuzzy sets as a convergence of -cuts in the topology of compact subsets of a metric space. Furthermore we define typical convergences of fuzzy vari...

ÖйúÑо¿Éú½ÌÓýÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

ÖйúѧÊõÆÚ¿¯ÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

ÊÀ½ç´óѧ¿ÆÑлú¹¹ÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

Öйú´óѧÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

ÈË¡¡Îï-ƪ

ÕýÔÚ¼ÓÔØ...

¿Î¡¡¼þ-ƪ

ÕýÔÚ¼ÓÔØ...

ÊÓÌý×ÊÁÏ-ƪ

ÕýÔÚ¼ÓÔØ...

ÑÐÕÐ×ÊÁÏ -ƪ

ÕýÔÚ¼ÓÔØ...

֪ʶҪÎÅ-ƪ

ÕýÔÚ¼ÓÔØ...

¹ú¼Ê¶¯Ì¬-ƪ

ÕýÔÚ¼ÓÔØ...

»áÒéÖÐÐÄ-ƪ

ÕýÔÚ¼ÓÔØ...

ѧÊõÖ¸ÄÏ-ƪ

ÕýÔÚ¼ÓÔØ...

ѧÊõÕ¾µã-ƪ

ÕýÔÚ¼ÓÔØ...